Table of Contents

1. Introduction ... 9
2. Idea of mechanical pulping ... 17
3. History of mechanical pulping .. 23
4. Fundamentals of mechanical pulping .. 35
5. Wood raw materials .. 68
6. Grinding and pressure grinding .. 116
7. Thermomechanical pulping ... 174
8. Chemimechanical pulping ... 247
9. Screening and cleaning .. 282
10. Reject refining ... 327
11. Bleaching of mechanical pulps .. 360
12. Thickening, storage and post-refining ... 399
13. Flowsheets for various mechanical pulping and screening processes 419
14. Environmental impacts of mechanical pulping ... 430
15. The character and properties of mechanical pulps ... 456
16. Future outlook ... 515

Conversion factors... 535
Index ... 537
CHAPTER 2

Idea of mechanical pulping

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wood for mechanical pulping</td>
</tr>
<tr>
<td>2</td>
<td>Wood treatments in mechanical pulping</td>
</tr>
<tr>
<td>3</td>
<td>Brief description of the mechanical pulping</td>
</tr>
<tr>
<td>4</td>
<td>Characteristics of mechanical pulps</td>
</tr>
<tr>
<td>5</td>
<td>End uses of mechanical pulps</td>
</tr>
</tbody>
</table>
CHAPTER 3

History of mechanical pulping

1 Invention of the grinding process ... 24
2 Development of the grinding process .. 25
 2.1 First commercial grinders ... 25
 2.2 First reject refiner .. 28
 2.3 Brown groundwood and chemigroundwood processes 28
 2.4 Hot grinding process .. 28
 2.5 Grindstone development ... 28
 2.6 Development of main grinder types ... 29
 2.7 Pressure grinding (PGW) ... 29
3 Thermomechanical pulping (TMP) ... 30
 3.1 Groundwood reject refining ... 30
 3.2 Original thermomechanical pulping process for hardboards 30
 3.3 Development of RMP for printing papers ... 31
 3.4 Development of modern TMP .. 32
4 Novel methods to produce mechanical pulps .. 33
5 Development of testing methods ... 33

References .. 34
CHAPTER 4

Fundamentals of mechanical pulping

1. **Rheological behaviour of wood** ... 36
2. **Fundamental mechanisms in mechanical pulping, especially grinding** 40
 2.1 Principles of defibration of wood by grinding .. 40
 2.1.1 Breakdown of the fibre structure by fatigue 41
 2.1.2 Removal of fibres from wood by peeling action 43
 2.2 Wood structure parameters affecting the breakdown process 44
 2.2.1 Thin-/thick-walled fibres ... 45
 2.2.2 Layer structure of the fibre ... 45
 2.2.3 Wood, a viscoelastic composite polymer .. 45
 2.3 Main physical parameters affecting wood grinding 46
 2.3.1 Wood in a cyclic stress field ... 46
 2.3.2 Influence of amplitude, frequency and temperature 47
 2.4 Energy consumption in grinding ... 51
3. **Fundamental mechanisms in refining** ... 52
 3.1 Development of fibre properties during refining 53
 3.2 Traditional descriptions of refining ... 53
 3.3 Theoretical approaches to understanding refining 54
 3.4 Measured data from the plate gap ... 55
 3.5 Present knowledge and understanding of the fundamentals in refining 57
4. **Reasons for differences in energy consumption between grinding and refining** 58
 4.1 Energy consumption in grinding and refining 58
 4.2 Reasons for high energy consumption ... 58
 4.3 Reasons for high energy consumption in chip refining 59

References ... 62
Wood raw materials

4 Pulp properties of different wood assortments ...98
4.1 Pulpwood vs. sawmill chips ..99
4.2 Butt log vs. top log ...102
4.3 Heartwood vs. sapwood ...103
4.4 Slow-grown vs. fast-grown wood ...103
5 Seasonal variations in wood properties ...104
6 Effect of wood supply practices on wood properties ...105
7 Effect of wood handling operations on wood and chip properties106
References ..109
CHAPTER 6

Grinding and pressure grinding

1 Introduction .. 118
2 Grinder productivity ... 119
3 Two-pocket wood grinders for groundwood processes .. 121
 3.1 Tampella two-pocket atmospheric SGW grinder .. 121
 3.2 Metso atmospheric SGW grinder .. 121
 3.3 Montague two-pocket SGW grinder ... 123
 3.4 Metso pressure grinders ... 124
 3.5 Continuous Metso two-pocket grinder ... 128
4 Wood grinding processes ... 128
 4.1 Atmospheric groundwood (SGW) ... 128
 4.2 Pressure groundwood processes ... 129
 4.2.1 PGW95 process .. 132
 4.2.2 PGW70 process .. 134
 4.2.3 PGW-S120 process .. 135
5 Chain grinders and thermogroundwood (TGW) .. 136
6 Grindstones and grindstone treatments .. 140
 6.1 Ceramic grindstones ... 140
 6.2 Abrasive specifications and their influence on grindstone behaviour 141
 6.3 New grinding surfaces .. 143
 6.4 Grindstone treatments .. 143
 6.5 Burr treatments for grindstones .. 144
 6.5.1 Grindstone truing ... 145
 6.5.2 Grindstone sharpening ... 145
 6.5.3 Dulling of grindstone .. 146
 6.5.4 Grindstone grooving .. 146
CHAPTER 7

Thermomechanical pulping

1 Introduction to thermomechanical pulping ... 176
 1.1 Principles of refiner mechanical pulping ... 176
 1.2 Main refiner types .. 177
 1.3 Thermomechanical pulping process ... 177
 1.4 Energy consumption and yield ... 178
2 Handling and pretreatment of chips .. 179
 2.1 Chip washer .. 180
 2.2 Dewatering of chips .. 181
 2.3 Chip wash water system ... 181
 2.4 Chip preheating .. 182
 2.5 Chip impregnation systems ... 183
3 Disc refiner .. 186
 3.1 Refiner concepts of different manufacturers ... 186
 3.2 Single-disc (SD) refiners ... 186
 3.2.1 Andritz SB 150 and 170 single-disc refiners .. 186
 3.2.2 Metso RGP SD single-disc refiners ... 188
 3.2.3 Other single-disc refiners: SD 65 and HXD64 ... 189
 3.3 High-capacity TMP refiners ... 192
 3.3.1 Metso RGP CD refiner .. 192
 3.3.2 Andritz Twin refiner ... 194
 3.4 Double disc (DD) refiners ... 196
 3.5 Processing pulp and steam in the refiner line ... 198
 3.6 Refining conditions and design parameters .. 202
4 Refiner segments — the “heart” of the refining process ... 204
 4.1 Refiner segment design .. 206
 4.2 Materials of refiner segments ... 208
CHAPTER 8

Chemimechanical pulping

1 Introduction .. 248
2 Process alternatives .. 249
 2.1 Position of the chemical treatment stage in the process .. 249
 2.2 Type of chemical treatment .. 250
3 Chemical stage .. 251
 3.1 Sulphonation chemistry .. 252
 3.2 Effect of process variables on the sulphonate content .. 254
4 The mechanical stage .. 255
 4.1 Dynamic mechanical properties of chemically treated wood and fibres 257
 4.2 Kind of rupture at fiberising ... 257
5 Process design and operation ... 258
 5.1 General schemes ... 258
 5.2 Chemical pretreatment .. 260
 5.3 Refining .. 262
 5.4 Drying .. 263
 5.5 Baling .. 264
6 Special processes .. 265
 6.1 Interstage sulphonation .. 265
 6.2 Reject sulphonation .. 265
 6.3 Chemical treatment with alkaline peroxide ... 266
 6.3.1 APMP process .. 267
 6.3.2 P-RC APMP process ... 268
 6.4 Alkaline peroxide treatment of reject ... 268
 6.5 Ozone treatment .. 269
7 Fibre and pulp properties .. 270
 7.1 Fibre properties .. 270
 7.2 Pulp properties ... 271
8 End uses ... 275
9 Market pulps .. 276
References .. 278
CHAPTER 9

Screening and cleaning

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Background</td>
<td>284</td>
</tr>
<tr>
<td>1.1</td>
<td>Principle and objectives of screening</td>
<td>284</td>
</tr>
<tr>
<td>1.1.1</td>
<td>Screening and fractionation</td>
<td>286</td>
</tr>
<tr>
<td>1.1.2</td>
<td>Screening principle – barrier and probability screening</td>
<td>287</td>
</tr>
<tr>
<td>2</td>
<td>Design of a pressure screen</td>
<td>288</td>
</tr>
<tr>
<td>2.1</td>
<td>General construction</td>
<td>288</td>
</tr>
<tr>
<td>2.2</td>
<td>Feed arrangement</td>
<td>290</td>
</tr>
<tr>
<td>2.3</td>
<td>Screen basket geometry</td>
<td>290</td>
</tr>
<tr>
<td>2.4</td>
<td>Rotor design</td>
<td>291</td>
</tr>
<tr>
<td>3</td>
<td>Flows within the screen</td>
<td>292</td>
</tr>
<tr>
<td>3.1</td>
<td>Axial flow in screen basket and reject removal</td>
<td>292</td>
</tr>
<tr>
<td>3.2</td>
<td>Radial flow in screen basket</td>
<td>293</td>
</tr>
<tr>
<td>3.3</td>
<td>Tangential flow in screen basket</td>
<td>293</td>
</tr>
<tr>
<td>3.4</td>
<td>Flow near basket surface and apertures</td>
<td>294</td>
</tr>
<tr>
<td>3.5</td>
<td>Turbulence, pulsation and backflow</td>
<td>294</td>
</tr>
<tr>
<td>4</td>
<td>Characterisation of screening and fractionation</td>
<td>296</td>
</tr>
<tr>
<td>4.1</td>
<td>Basic equations</td>
<td>296</td>
</tr>
<tr>
<td>4.2</td>
<td>Screening efficiencies</td>
<td>298</td>
</tr>
<tr>
<td>4.3</td>
<td>Assessment of performance with operating curves</td>
<td>299</td>
</tr>
<tr>
<td>5</td>
<td>Parameters affecting pressure screen performance</td>
<td>300</td>
</tr>
<tr>
<td>5.1</td>
<td>Design parameters</td>
<td>300</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Rotor design</td>
<td>301</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Screen basket geometry</td>
<td>302</td>
</tr>
<tr>
<td>5.2</td>
<td>Operating parameters</td>
<td>304</td>
</tr>
<tr>
<td>5.3</td>
<td>Furnish parameters</td>
<td>306</td>
</tr>
<tr>
<td>6</td>
<td>Energy consumption and power in pressure screening</td>
<td>306</td>
</tr>
</tbody>
</table>
CHAPTER 10

Reject refining

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fibres, equipment and systems</td>
<td>328</td>
</tr>
<tr>
<td>2</td>
<td>Reject handling</td>
<td>329</td>
</tr>
<tr>
<td>2.1</td>
<td>Thickening</td>
<td>329</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Bow screen</td>
<td>330</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Screw press</td>
<td>330</td>
</tr>
<tr>
<td>2.1.3</td>
<td>Twin-roll press</td>
<td>331</td>
</tr>
<tr>
<td>2.1.4</td>
<td>Twin-wire press</td>
<td>333</td>
</tr>
<tr>
<td>2.2</td>
<td>Pretreatment</td>
<td>334</td>
</tr>
<tr>
<td>3</td>
<td>Reject refiners</td>
<td>335</td>
</tr>
<tr>
<td>3.1</td>
<td>Reject refining systems</td>
<td>338</td>
</tr>
<tr>
<td>4</td>
<td>Control and operating principles</td>
<td>341</td>
</tr>
<tr>
<td>4.1</td>
<td>Main and control variables</td>
<td>342</td>
</tr>
<tr>
<td>4.2</td>
<td>Process conditions and disturbances</td>
<td>344</td>
</tr>
<tr>
<td>4.2.1</td>
<td>HC refining</td>
<td>347</td>
</tr>
<tr>
<td>4.2.2</td>
<td>LC refining</td>
<td>349</td>
</tr>
<tr>
<td>5</td>
<td>Effects of reject refining on pulp and paper properties</td>
<td>350</td>
</tr>
<tr>
<td>5.1</td>
<td>Printing paper grades</td>
<td>354</td>
</tr>
<tr>
<td>5.2</td>
<td>Board grades</td>
<td>355</td>
</tr>
<tr>
<td>5.3</td>
<td>Hardwood CTMP</td>
<td>355</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>357</td>
</tr>
</tbody>
</table>
CHAPTER 11

Bleaching of mechanical pulps

1 Bleaching or brightening ..362
2 Factors affecting the brightness of high-yield pulps ...362
3 Principles of bleaching high-yield pulps ...366
4 Peroxide bleaching ...367
 4.1 Reactions ..367
 4.2 Process variables ...368
 4.2.1 Peroxide dose ...368
 4.2.2 Removal of transition metal ions ..369
 4.2.3 Pulp pH ..370
 4.2.4 Stabilising agents ..373
 4.2.5 Consistency ..375
 4.2.6 Temperature ...376
 4.2.7 Retention time ..376
 4.2.8 Acidification ...376
 4.3 Bleach plant design and operation ..377
 4.3.1 Single-stage medium-consistency bleaching ..377
 4.3.2 High-consistency bleaching ...378
 4.3.3 Medium- and high-consistency peroxide bleaching379
 4.3.4 Refiner bleaching ..381
 4.3.5 Flash dryer bleaching ..381
5 Dithionite (hydrosulphite) bleaching ..381
 5.1 Reactions ..381
 5.2 Process variables ...383
 5.2.1 Dithionite (hydrosulphite) dose ..383
 5.2.2 Chelating agents ..384
 5.2.3 Pulp pH ..384
Bleaching of mechanical pulps

5.2.4 Consistency ..384
5.2.5 Temperature ...385
5.2.6 Retention time ..385

5.3 Bleach plant design and operation385
5.3.1 Tower bleaching ..385
5.3.2 Two-stage bleaching with peroxide and dithionite385
5.3.3 Chest bleaching ..387
5.3.4 Refiner and grinder bleaching387

6 Other bleaching chemicals ..388
6.1 Potential bleaching chemicals388
6.2 Sodium bisulphite ..388
6.3 Formamidine sulphonic acid389

7 Bleaching of chemimechanical pulps389

8 Brightness reversion ..390
8.1 General ...390
8.2 Determination of brightness reversion391
8.3 Thermal brightness reversion392
8.4 Light-induced brightness reversion393

9 Effect on yield and papermaking properties393
9.1 Dithionite (hydrosulphite) bleaching393
9.2 Peroxide bleaching ..394

10 Development of the bleaching technologies395
References ..396
CHAPTER 12

Thickening, storage and post-refining

1. **Thickening** ... 400
 1.1 Disc filters .. 400
 1.2 Broke deckers .. 402
 1.3 Bow screens .. 402
 1.3.1 Screw presses, twin-roll presses and twin-wire presses .. 403
2. **Storage of mechanical pulps** .. 404
 2.1 Storage systems .. 404
 2.2 Effect of storage on pulp properties ... 405
3. **Post-refining** ... 406
 3.1 Objectives of post-refining ... 406
 3.2 Equipment and process systems .. 407
 3.3 Refining conditions and operations ... 408
 3.4 Refining effects .. 413
 References .. 418
CHAPTER 13

Flowsheets for various mechanical pulping and screening processes

1 Groundwood and thermomechanical pulping processes ..420
1.1 SGW and PGW pulp screening processes ...422
1.2 TMP and CTMP pulp screening processes ...422
2 Mechanical pulping processes for newsprint-paper grades422
2.1 Newsprint-grade PGW pulp screening processes ..423
2.2 Newsprint-grade TMP pulp screening processes ..424
3 Mechanical pulping processes for SC- and LWC-paper grades425
3.1 SC- and LWC-grade SGW and PGW pulp screening processes425
3.2 SC- and LWC-grade TMP pulp screening processes ..426
4 Mechanical pulping processes for board grades ..427
4.1 Board-grade SGW and PGW pulp screening processes ..428
4.2 Board-grade TMP and CTMP pulp screening processes428
References ..429
CHAPTER 14

Environmental impacts of mechanical pulping

1 Woodyard, debarking, pulping and bleaching processes ..432
2 Emissions from processes ..433
3 Wood and chip storage ..435
 3.1 Trends in techniques ..435
 3.2 Changes in wood during storage ..435
4 Debarking and chipping ..436
 4.1 Wet and dry debarking ..436
 4.2 Water circulation systems in debarking ..436
 4.3 Need for water ...437
5 Treatment of debarking effluent ...437
 5.1 Composition and concentration of debarking circulation water437
 5.2 Effluent load ..438
6 Release of wood components into water in mechanical pulping and bleaching438
 6.1 Discharge data for different pulping processes ..438
 6.2 Influence of bleaching stages ..439
 6.3 Chemical character of released wood components ..440
 6.4 Toxic components in effluents ...443
7 Factors influencing release of wood components into water ..443
 7.1 Effect of pulping conditions ..443
 7.2 Effects of wood quality ...444
8 Evaporation of compounds in mechanical pulping ..445
 8.1 Volatility of wood compounds ..445
 8.2 Contents of volatile compounds ..445
9 Water circulation systems in mechanical pulping plants ...446
 9.1 Connection between pulp mill and paper mill ...446
 9.2 Washing stage ...447
Environmental impacts of mechanical pulping

10 Treatment of mechanical pulping effluents ... 448
10.1 Purification methods .. 448
10.2 Potential for installing internal cleaning stages in a mechanical pulp plant 449
10.3 Zero effluent technology ... 449
11 Carbon footprint of a mechanical printing paper ... 450
References ... 452
CHAPTER 15

The character and properties of mechanical pulps

1 Origin of mechanical pulp properties ...458
2 Mechanical pulp properties and paper/board grades..461
 2.1 Mechanical printing papers ..461
 2.1.1 Newsprint ..464
 2.1.2 SC paper ...465
 2.1.3 LWC paper ...466
 2.2 Mechanical-pulp board ..466
3 Development of pulp properties ...467
 3.1 Fibre shortening ..467
 3.2 Fibre-wall thickness and structure ..468
 3.3 Pulp fractions and fibre properties ..469
 3.3.1 Long-fibre fraction ..470
 3.3.2 Middle fraction ..470
 3.3.3 Fines fraction ...471
 3.3.4 Properties of fractions for pulp characterisation474
 3.4 Latency in mechanical pulps ...476
 3.5 Mechanical pulp fibres and paper recycling ..476
4 Properties of pulp suspensions and their characterisation478
 4.1 Pulp property versus method ..478
 4.2 Methods for determining drainability ..479
 4.2.1 Canadian Standard Freeness, Schopper-Riegler value and drainage time ..479
 4.2.2 Water retention value ..479
 4.2.3 Specific filtration resistance, specific surface area and settling rate ..480
 4.2.4 Water quality and its effect on drainage481
 4.3 Methods for determining fractional composition482
 4.4 Methods for determining shive content ..485
 4.5 Methods for determining fines properties ..486
5 Fibre properties and characterisation methods

5.1 Fibre property versus method

5.2 Methods for determining fibre dimensions

- **5.2.1 Fibre length**
- **5.2.2 Fibre form**
- **5.2.3 Cross-sectional dimensions of fibres**

5.3 Methods for determining fibre coarseness

5.4 Methods for determining fibre wall structure

- **5.4.1 Fibre wall damage**
- **5.4.2 Internal fibrillation**
- **5.4.3 Fibre wall dimensions along the fibre length axis**
- **5.4.4 Flexibility and stiffness of fibres**

5.5 Methods for determining fibre surface properties

- **5.5.1 External fibrillation**
- **5.5.2 Fibre surface roughness**
- **5.5.3 Chemical composition of fibre surfaces**

6 Handsheet properties and paper testing

6.1 Preparation of handsheets

- **6.1.1 Handsheets for testing physical properties except optical properties**
- **6.1.2 Handsheets for testing optical properties**

6.2 Testing of handsheet properties

6.3 Typical sheet properties of mechanical pulps

References
CHAPTER 16

Future outlook

1 Future demand for mechanical pulps ...516
1.1 Development of paper demand 2010–2020 ...516
1.2 Furnish trends ...518
1.3 Production of mechanical pulps ...520
1.4 Future consumption of mechanical pulps ...522

2 Paper and mechanical pulp quality development ...522
2.1 General quality characteristics ...522
2.2 Newsprint ...522
2.3 Supercalendered (SC) papers ...523
2.4 Coated mechanical and coated wood-free papers523
2.5 Carton boards ...523

3 Energy consumption of GW and TMP ...524
3.1 General trends ...524
3.2 Possibilities to reduce specific energy consumption524
3.3 Consequences of electric energy savings ...526

4 Impact of the increasing use of recycled fibre ..527

5 Raw material availability ...528

6 Process development ..530
6.1 Pulping capacity development ..530
6.2 Advantages and disadvantages of various mechanical pulping processes531
6.3 SWOT analysis for mechanical pulping ...531

References ..533